Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
Viruses ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: covidwho-2301390

ABSTRACT

SARS-CoV-2 genome surveillance is important for monitoring risk groups and health workers as well as data on new cases and mortality rate due to COVID-19. We characterized the circulation of SARS-CoV-2 variants from May 2021 to April 2022 in the state of Santa Catarina, southern Brazil, and evaluated the similarity between variants present in the population and healthcare workers (HCW). A total of 5291 sequenced genomes demonstrated the circulation of 55 strains and four variants of concern (Alpha, Delta, Gamma and Omicron-sublineages BA.1 and BA.2). The number of cases was relatively low in May 2021, but the number of deaths was higher with the Gamma variant. There was a significant increase in both numbers between December 2021 and February 2022, peaking in mid-January 2022, when the Omicron variant dominated. After May 2021, two distinct variant groups (Delta and Omicron) were observed, equally distributed among the five Santa Catarina mesoregions. Moreover, from November 2021 to February 2022, similar variant profiles between HCW and the general population were observed, and a quicker shift from Delta to Omicron in HCW than in the general population. This demonstrates the importance of HCW as a sentinel group for monitoring disease trends in the general population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Genomics , Health Personnel
2.
Bioinform Biol Insights ; 16: 11779322221095221, 2022.
Article in English | MEDLINE | ID: covidwho-1846714

ABSTRACT

Epitopes are portions of a protein that are recognized by antibodies. These small amino acid sequences represent a significant breakthrough in a branch of bioinformatics called immunoinformatics. Various software are available for linear B-cell epitope (BCE) prediction such as ABCPred, SVMTrip, EpiDope, and EpitopeVec; a well-known BCE predictor is BepiPred-2.0. However, despite the prediction, there are several essential steps, such as epitope assembly, evaluation, and searching for epitopes in other proteomes. Here, we present EpiBuilder (https://epibuilder.sourceforge.io), a user friendly software that assists in epitope assembly, classifying and searching using input results of BepiPred-2.0. EpiBuilder generates several output results from these data and supports a proteome-wide processing approach. In addition, this software provides the following features: Chou & Fasman beta-turn prediction, Emini surface accessibility prediction, Karplus and Schulz flexibility prediction, Kolaskar and Tongaonkar antigenicity, Parker hydrophilicity prediction, N-glycosylation domains, and hydropathy. These information generate a unique topology for each epitope, visually demonstrating its characteristics. The software can search the entire epitope sequence in various FASTA files, and it allows to use BLASTP to identify epitopes that eventually have sequence variations. As an EpiBuilder application, we developed a epitope dataset from the protozoan Trypanosoma brucei gambiense, the gram-positive bacterium Clostridioides difficile, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

3.
Viruses ; 14(4)2022 03 27.
Article in English | MEDLINE | ID: covidwho-1834922

ABSTRACT

The western mesoregion of the state of Santa Catarina (SC), Southern Brazil, was heavily affected as a whole by the COVID-19 pandemic in early 2021. This study aimed to evaluate the dynamics of the SARS-CoV-2 virus spreading patterns in the SC state from March 2020 to April 2021 using genomic surveillance. During this period, there were 23 distinct variants, including Beta and Gamma, among which the Gamma and related lineages were predominant in the second pandemic wave within SC. A regionalization of P.1-like-II in the Western SC region was observed, concomitant to the increase in cases, mortality, and the case fatality rate (CFR) index. This is the first evidence of the regionalization of the SARS-CoV-2 transmission in SC and it highlights the importance of tracking the variants, dispersion, and impact of SARS-CoV-2 on the public health systems.


Subject(s)
COVID-19 , SARS-CoV-2 , Brazil/epidemiology , COVID-19/epidemiology , Humans , Mutation , Pandemics , Phylogeny , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
4.
Viruses ; 14(4):695, 2022.
Article in English | MDPI | ID: covidwho-1762546

ABSTRACT

The western mesoregion of the state of Santa Catarina (SC), Southern Brazil, was heavily affected as a whole by the COVID-19 pandemic in early 2021. This study aimed to evaluate the dynamics of the SARS-CoV-2 virus spreading patterns in the SC state from March 2020 to April 2021 using genomic surveillance. During this period, there were 23 distinct variants, including Beta and Gamma, among which the Gamma and related lineages were predominant in the second pandemic wave within SC. A regionalization of P.1-like-II in the Western SC region was observed, concomitant to the increase in cases, mortality, and the case fatality rate (CFR) index. This is the first evidence of the regionalization of the SARS-CoV-2 transmission in SC and it highlights the importance of tracking the variants, dispersion, and impact of SARS-CoV-2 on the public health systems.

5.
Sci Total Environ ; 778: 146198, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1121857

ABSTRACT

Human sewage from Florianopolis (Santa Catarina, Brazil) was analyzed for severe acute respiratory syndrome coronavirus-2 (SARS-CoV2) from October 2019 until March 2020. Twenty five ml of sewage samples were clarified and viruses concentrated using a glycine buffer method coupled with polyethylene glycol precipitation, and viral RNA extracted using a commercial kit. SARS-CoV-2 RNA was detected by RT-qPCR using oligonucleotides targeting N1, S and two RdRp regions. The results of all positive samples were further confirmed by a different RT-qPCR system in an independent laboratory. S and RdRp amplicons were sequenced to confirm identity with SARS-CoV-2. Genome sequencing was performed using two strategies; a sequence-independent single-primer amplification (SISPA) approach, and by direct metagenomics using Illumina's NGS. SARS-CoV-2 RNA was detected on 27th November 2019 (5.49 ± 0.02 log10 SARS-CoV-2 genome copies (GC) L-1), detection being confirmed by an independent laboratory and genome sequencing analysis. The samples in the subsequent three events were positive by all RT-qPCR assays; these positive results were also confirmed by an independent laboratory. The average load was 5.83 ± 0.12 log10 SARS-CoV-2 GC L-1, ranging from 5.49 ± 0.02 log10 GC L-1 (27th November 2019) to 6.68 ± 0.02 log10 GC L-1 (4th March 2020). Our findings demonstrate that SARS-CoV-2 was likely circulating undetected in the community in Brazil since November 2019, earlier than the first reported case in the Americas (21st January 2020).


Subject(s)
COVID-19 , RNA, Viral , Brazil , Humans , SARS-CoV-2 , Sewage
SELECTION OF CITATIONS
SEARCH DETAIL